Parallel
Pricing
Benchmarks
Blog
Docs
Products:[Search API](https://parallel.ai/products/search)[Extract API](https://docs.parallel.ai/extract/extract-quickstart)[Monitor API](https://docs.parallel.ai/monitor-api/monitor-quickstart)[Task API](https://docs.parallel.ai/task-api/task-quickstart)[FindAll API](https://docs.parallel.ai/findall-api/findall-quickstart)[Chat API](https://docs.parallel.ai/chat-api/chat-quickstart)
[Pricing](https://parallel.ai/pricing)[Benchmarks](https://parallel.ai/benchmarks)[Blog](https://parallel.ai/blog)[Docs](https://docs.parallel.ai/home)
Contact Sales[Contact Sales](https://calendar.google.com/calendar/u/0/appointments/schedules/AcZssZ12pcl2vHJKlBaB2zZoFWhc4Q1VopGRyNwm4mKJFQiWmJPS3839IqrDQQzfSr028FVCAgKY4gt2)Log In / Sign Up
P
[Log In / Sign Up](https://platform.parallel.ai/)
[Menu]

# Introducing research models with Basis for the Parallel Chat API

Tags:Product Release
Reading time: 2 min
Product release: Research Models with Basis for the Parallel Chat API

Starting today, the Parallel Chat API supports three new research models, bringing research-grade web intelligence with full Basis verification[Basis verification]($https://docs.parallel.ai/task-api/guides/access-research-basis) to interactive AI applications.

The Chat API now offers two modes: the speed model for low-latency responses across a broad range of use cases, and research models (Lite, Base, Core) for deeper outputs where comprehensive verification matters more than milliseconds. Both return OpenAI ChatCompletions-compatible streaming text and JSON.

### Example request
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from openai import OpenAI client = OpenAI( api_key="PARALLEL_API_KEY", base_url="https://api.parallel.ai" ) response = client.chat.completions.create( model="core", # Research model with full Basis support messages=[ {"role": "user", "content": "What are the key risk factors for Acme Corp?"} ], ) print(response.choices[0].message.content) print(response.basis) # Citations, reasoning, confidence scores```
from openai import OpenAI
 
client = OpenAI(
 
api_key="PARALLEL_API_KEY",
 
base_url="https://api.parallel.ai"
 
)
 
response = client.chat.completions.create(
 
model="core", # Research model with full Basis support
 
messages=[
 
{"role": "user", "content": "What are the key risk factors for Acme Corp?"}
 
],
 
)
 
print(response.choices[0].message.content)
 
print(response.basis) # Citations, reasoning, confidence scores
```

## More models for different needs

The speed model delivers ~3-second time-to-first-token for chat interfaces and interactive tools. Research models trade latency for depth, running the same processors that power our Task API, now accessible through an OpenAI-compatible interface.

Model
Best For
Basis Support
Latency
speed
Low latency across a broad range of use cases
No
~3s
lite
Simple lookups, basic metadata
Yes
10-60s
base
Standard enrichments, factual queries
Yes
15-100s
core
Complex research, multi-source synthesis
Yes
60s-5min
![Model Best For Basis Support Latency speed Low latency across a broad range of use cases No ~3s lite Simple lookups, basic metadata Yes 10-60s base Standard enrichments, factual queries Yes 15-100s core Complex research, multi-source synthesis Yes 60s-5min](https://cdn.sanity.io/images/5hzduz3y/production/96e5986ed7f75251c01f6da6122cbd51761d733e-3606x2109.jpg)

## Research-grade verification with Basis

Every response from research models includes Basis, the same verification framework trusted in production workflows across insurance, finance, and sales intelligence.

Basis provides four components for every output: citations linking to source URLs, reasoning explaining how conclusions were reached, excerpts containing relevant text from sources, and calibrated confidence scores classified as low, medium, or high.

### Basis Verification
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
{ "field": "risk_factors", "citations": [ { "url": "https://sec.gov/filings/acme-10k-2024", "excerpts": ["The company faces significant supply chain concentration risk..."] } ], "reasoning": "Multiple SEC filings and analyst reports corroborate supply chain dependencies...", "confidence": "high" }```
{
 
"field": "risk_factors",
 
"citations": [
 
{
 
"url": "https://sec.gov/filings/acme-10k-2024",
 
"excerpts": ["The company faces significant supply chain concentration risk..."]
 
}
 
],
 
"reasoning": "Multiple SEC filings and analyst reports corroborate supply chain dependencies...",
 
"confidence": "high"
 
}
```

These confidence scores are calibrated against real-world datasets. High-confidence outputs have 2-3x lower error rates than overall dataset averages. Low-confidence flags identify exactly where human review adds value, enabling efficient workflows that focus attention only where it matters.

## **Why research models matter**

Research models give the Chat API flexibility to think more deeply and search the web more widely. When a question requires multi-hop reasoning, synthesis across scattered sources, or verification from primary documents, research models allocate the compute and retrieval budget to get the best answer, not just the fastest one.

## **Start building**

Research models are available today in the Parallel Chat API. Get started in our Developer Platform[Developer Platform]($https://platform.parallel.ai/) or dive into the documentation[documentation]($https://docs.parallel.ai/).

## **About Parallel Web Systems**

Parallel develops critical web search infrastructure for AI. Our suite of web search and agent APIs is built on a rapidly growing proprietary index of the global internet. These solutions transform human tasks that previously took days and weeks into agentic tasks that now take seconds and minutes.

Fortune 100 and 500 companies use Parallel's web intelligence APIs in insurance, finance, and retail workflows to automate critical business functions. Leading AI-native businesses like Starbridge, Amp, and Day AI use Parallel to support core features like public sector contract monitoring, documentation lookup, and GTM operations.


Parallel avatar

By Parallel

January 15, 2026

## Related Posts43

Parallel + Cerebras
Parallel avatar

- [Build a real-time fact checker with Parallel and Cerebras](https://parallel.ai/blog/cerebras-fact-checker)

Tags:Cookbook
Reading time: 5 min
DeepSearch QA: Task API
Parallel avatar

- [Parallel Task API achieves state-of-the-art accuracy on DeepSearchQA](https://parallel.ai/blog/deepsearch-qa)

Tags:Benchmarks
Reading time: 3 min
Product release: Granular Basis
Parallel avatar

- [Introducing Granular Basis for the Task API](https://parallel.ai/blog/granular-basis-task-api)

Tags:Product Release
Reading time: 3 min
How Amp’s coding agents build better software with Parallel Search
Parallel avatar

- [How Amp’s coding agents build better software with Parallel Search](https://parallel.ai/blog/case-study-amp)

Tags:Case Study
Reading time: 3 min
Latency improvements on the Parallel Task API
Parallel avatar

- [Latency improvements on the Parallel Task API ](https://parallel.ai/blog/task-api-latency)

Tags:Product Release
Reading time: 3 min
Product release: Extract
Parallel avatar

- [Introducing Parallel Extract](https://parallel.ai/blog/introducing-parallel-extract)

Tags:Product Release
Reading time: 2 min
FindAll API - Product Release
Parallel avatar

- [Introducing Parallel FindAll](https://parallel.ai/blog/introducing-findall-api)

Tags:Product Release,Benchmarks
Reading time: 4 min
Product release: Monitor API
Parallel avatar

- [Introducing Parallel Monitor](https://parallel.ai/blog/monitor-api)

Tags:Product Release
Reading time: 3 min
Parallel raises $100M Series A to build web infrastructure for agents
Parallel avatar

- [Parallel raises $100M Series A to build web infrastructure for agents](https://parallel.ai/blog/series-a)

Tags:Fundraise
Reading time: 3 min
How Macroscope reduced code review false positives with Parallel
Parallel avatar

- [How Macroscope reduced code review false positives with Parallel](https://parallel.ai/blog/case-study-macroscope)

Reading time: 2 min
Product release - Parallel Search API
Parallel avatar

- [Introducing Parallel Search](https://parallel.ai/blog/introducing-parallel-search)

Tags:Benchmarks
Reading time: 7 min
Benchmarks: SealQA: Task API
Parallel avatar

- [Parallel processors set new price-performance standard on SealQA benchmark](https://parallel.ai/blog/benchmarks-task-api-sealqa)

Tags:Benchmarks
Reading time: 3 min
Introducing LLMTEXT, an open source toolkit for the llms.txt standard
Parallel avatar

- [Introducing LLMTEXT, an open source toolkit for the llms.txt standard](https://parallel.ai/blog/LLMTEXT-for-llmstxt)

Tags:Product Release
Reading time: 7 min
Starbridge + Parallel
Parallel avatar

- [How Starbridge powers public sector GTM with state-of-the-art web research](https://parallel.ai/blog/case-study-starbridge)

Tags:Case Study
Reading time: 4 min
Building a market research platform with Parallel Deep Research
Parallel avatar

- [Building a market research platform with Parallel Deep Research](https://parallel.ai/blog/cookbook-market-research-platform-with-parallel)

Tags:Cookbook
Reading time: 4 min
How Lindy brings state-of-the-art web research to automation flows
Parallel avatar

- [How Lindy brings state-of-the-art web research to automation flows](https://parallel.ai/blog/case-study-lindy)

Tags:Case Study
Reading time: 3 min
Introducing the Parallel Task MCP Server
Parallel avatar

- [Introducing the Parallel Task MCP Server](https://parallel.ai/blog/parallel-task-mcp-server)

Tags:Product Release
Reading time: 4 min
Introducing the Core2x Processor for improved compute control on the Task API
Parallel avatar

- [Introducing the Core2x Processor for improved compute control on the Task API](https://parallel.ai/blog/core2x-processor)

Tags:Product Release
Reading time: 2 min
How Day AI merges private and public data for business intelligence
Parallel avatar

- [How Day AI merges private and public data for business intelligence](https://parallel.ai/blog/case-study-day-ai)

Tags:Case Study
Reading time: 4 min
Full Basis framework for all Task API Processors
Parallel avatar

- [Full Basis framework for all Task API Processors](https://parallel.ai/blog/full-basis-framework-for-task-api)

Tags:Product Release
Reading time: 2 min
Building a real-time streaming task manager with Parallel
Parallel avatar

- [Building a real-time streaming task manager with Parallel](https://parallel.ai/blog/cookbook-sse-task-manager-with-parallel)

Tags:Cookbook
Reading time: 5 min
How Gumloop built a new AI automation framework with web intelligence as a core node
Parallel avatar

- [How Gumloop built a new AI automation framework with web intelligence as a core node](https://parallel.ai/blog/case-study-gumloop)

Tags:Case Study
Reading time: 3 min
Introducing the TypeScript SDK
Parallel avatar

- [Introducing the TypeScript SDK](https://parallel.ai/blog/typescript-sdk)

Tags:Product Release
Reading time: 1 min
Building a serverless competitive intelligence platform with MCP + Task API
Parallel avatar

- [Building a serverless competitive intelligence platform with MCP + Task API](https://parallel.ai/blog/cookbook-competitor-research-with-reddit-mcp)

Tags:Cookbook
Reading time: 6 min
Introducing Parallel Deep Research reports
Parallel avatar

- [Introducing Parallel Deep Research reports](https://parallel.ai/blog/deep-research-reports)

Tags:Product Release
Reading time: 2 min
BrowseComp / DeepResearch: Task API
Parallel avatar

- [A new pareto-frontier for Deep Research price-performance](https://parallel.ai/blog/deep-research-benchmarks)

Tags:Benchmarks
Reading time: 4 min
Building a Full-Stack Search Agent with Parallel and Cerebras
Parallel avatar

- [Building a Full-Stack Search Agent with Parallel and Cerebras](https://parallel.ai/blog/cookbook-search-agent)

Tags:Cookbook
Reading time: 5 min
Webhooks for the Parallel Task API
Parallel avatar

- [Webhooks for the Parallel Task API](https://parallel.ai/blog/webhooks)

Tags:Product Release
Reading time: 2 min
Introducing Parallel: Web Search Infrastructure for AIs
Parallel avatar

- [Introducing Parallel: Web Search Infrastructure for AIs ](https://parallel.ai/blog/introducing-parallel)

Tags:Benchmarks,Product Release
Reading time: 6 min
Introducing SSE for Task Runs
Parallel avatar

- [Introducing SSE for Task Runs](https://parallel.ai/blog/sse-for-tasks)

Tags:Product Release
Reading time: 2 min
A new line of advanced Processors: Ultra2x, Ultra4x, and Ultra8x
Parallel avatar

- [A new line of advanced Processors: Ultra2x, Ultra4x, and Ultra8x ](https://parallel.ai/blog/new-advanced-processors)

Tags:Product Release
Reading time: 2 min
Introducing Auto Mode for the Parallel Task API
Parallel avatar

- [Introducing Auto Mode for the Parallel Task API](https://parallel.ai/blog/task-api-auto-mode)

Tags:Product Release
Reading time: 1 min
A linear dithering of a search interface for agents
Parallel avatar

- [A state-of-the-art search API purpose-built for agents](https://parallel.ai/blog/search-api-benchmark)

Tags:Benchmarks
Reading time: 3 min
Parallel Search MCP Server in Devin
Parallel avatar

- [Parallel Search MCP Server in Devin](https://parallel.ai/blog/parallel-search-mcp-in-devin)

Tags:Product Release
Reading time: 2 min
Introducing Tool Calling via MCP Servers
Parallel avatar

- [Introducing Tool Calling via MCP Servers](https://parallel.ai/blog/mcp-tool-calling)

Tags:Product Release
Reading time: 2 min
Introducing the Parallel Search MCP Server
Parallel avatar

- [Introducing the Parallel Search MCP Server ](https://parallel.ai/blog/search-mcp-server)

Tags:Product Release
Reading time: 2 min
Starting today, Source Policy is available for both the Parallel Task API and Search API - giving you granular control over which sources your AI agents access and how results are prioritized.
Parallel avatar

- [Introducing Source Policy](https://parallel.ai/blog/source-policy)

Tags:Product Release
Reading time: 1 min
The Parallel Task Group API
Parallel avatar

- [The Parallel Task Group API](https://parallel.ai/blog/task-group-api)

Tags:Product Release
Reading time: 1 min
State of the Art Deep Research APIs
Parallel avatar

- [State of the Art Deep Research APIs](https://parallel.ai/blog/deep-research)

Tags:Benchmarks
Reading time: 3 min
Introducing the Parallel Search API
Parallel avatar

- [Parallel Search API is now available in alpha](https://parallel.ai/blog/parallel-search-api)

Tags:Product Release
Reading time: 2 min
Introducing the Parallel Chat API - a low latency web research API for web based LLM completions. The Parallel Chat API returns completions in text and structured JSON format, and is OpenAI Chat Completions compatible.
Parallel avatar

- [Introducing the Parallel Chat API ](https://parallel.ai/blog/chat-api)

Tags:Product Release
Reading time: 1 min
Parallel Web Systems introduces Basis with calibrated confidences - a new verification framework for AI web research and search API outputs that sets a new industry standard for transparent and reliable deep research.
Parallel avatar

- [Introducing Basis with Calibrated Confidences ](https://parallel.ai/blog/introducing-basis-with-calibrated-confidences)

Tags:Product Release
Reading time: 4 min
The Parallel Task API is a state-of-the-art system for automated web research that delivers the highest accuracy at every price point.
Parallel avatar

- [Introducing the Parallel Task API](https://parallel.ai/blog/parallel-task-api)

Tags:Product Release,Benchmarks
Reading time: 4 min
![Company Logo](https://parallel.ai/parallel-logo-540.png)

Contact

  • hello@parallel.ai[hello@parallel.ai](mailto:hello@parallel.ai)

Products

  • Search API[Search API](https://parallel.ai/products/search)
  • Extract API[Extract API](https://docs.parallel.ai/extract/extract-quickstart)
  • Task API[Task API](https://docs.parallel.ai/task-api/task-quickstart)
  • FindAll API[FindAll API](https://docs.parallel.ai/findall-api/findall-quickstart)
  • Chat API[Chat API](https://docs.parallel.ai/chat-api/chat-quickstart)
  • Monitor API[Monitor API](https://platform.parallel.ai/play/monitor)

Resources

  • About[About](https://parallel.ai/about)
  • Pricing[Pricing](https://parallel.ai/pricing)
  • Docs[Docs](https://docs.parallel.ai)
  • Blog[Blog](https://parallel.ai/blog)
  • Changelog[Changelog](https://docs.parallel.ai/resources/changelog)
  • Careers[Careers](https://jobs.ashbyhq.com/parallel)

Info

  • Terms of Service[Terms of Service](https://parallel.ai/terms-of-service)
  • Customer Terms[Customer Terms](https://parallel.ai/customer-terms)
  • Privacy[Privacy](https://parallel.ai/privacy-policy)
  • Acceptable Use[Acceptable Use](https://parallel.ai/acceptable-use-policy)
  • Trust Center[Trust Center](https://trust.parallel.ai/)
![SOC 2 Compliant](https://parallel.ai/soc2.svg)
LinkedIn[LinkedIn](https://www.linkedin.com/company/parallel-web/about/)Twitter[Twitter](https://x.com/p0)GitHub[GitHub](https://github.com/parallel-web)
All Systems Operational

Parallel Web Systems Inc. 2026