Parallel
About[About](https://parallel.ai/about)Pricing[Pricing](https://parallel.ai/pricing)Careers[Careers](https://jobs.ashbyhq.com/parallel)Blog[Blog](https://parallel.ai/blog)Docs[Docs](https://docs.parallel.ai/home)
[Start Building]
[Menu]

# Introducing Parallel Deep Research reports

The Parallel Task API now supports comprehensive markdown Deep Research report generation with in-line citations and relevant excerpts.

Tags:Product Release
Reading time: 2 min
Introducing Parallel Deep Research reports

Starting today, the Parallel Task API supports comprehensive markdown report generation - transforming complex web research into publication-ready documents with in-line citations and source excerpts.

Previously, developers using our Task API for Deep Research automatically received structured JSON outputs[structured JSON outputs]($https://parallel.ai/blog/task-api-auto-mode) that required additional processing to create readable reports. Now, with our new text schema mode, the same state-of-the-art web research that powers our Task API automatically generates comprehensive markdown-formatted reports, complete with in-line citations and relevant source excerpts.

## **From structured data to publication-ready reports**

With the new text schema mode, instead of parsing JSON fields and manually constructing narratives, users can now specify output_schema: text to receive reports that synthesize findings across multiple sources into coherent, citable documents.

Consider this market research request:

### Create a DR request with text schema mode
1
2
3
4
5
6
7
8
9
10
11
12
curl -X POST "https://api.parallel.ai/v1/tasks/runs" \ -H "x-api-key: PARALLEL_API_KEY" \ -H 'Content-Type: application/json' \ --data-raw '{ "input": "Create a comprehensive market research report on the HVAC industry in the USA including an analysis of recent M&A activity and other relevant details.", "processor": "ultra", "task_spec": { "output_schema": { "type": "text" } } }'```
curl -X POST "https://api.parallel.ai/v1/tasks/runs" \
-H "x-api-key: PARALLEL_API_KEY" \
-H 'Content-Type: application/json' \
--data-raw '{
"input": "Create a comprehensive market research report on the HVAC industry in the USA including an analysis of recent M&A activity and other relevant details.",
"processor": "ultra",
"task_spec": {
"output_schema": {
"type": "text"
}
}
}'
```

The response delivers a self-contained markdown report with in-line citations, and the list of all websites/URLs/documents with excerpts that were used as part of the research process - all formatted for immediate use in presentations, strategic planning documents, academic reports, or further LLM processing.

The text schema also supports an optional description field, allowing users to specify report parameters such as preferred length, focus areas, or formatting requirements - providing granular control over outputs.

## **Use Parallel as your Deep Research node**

Organizations across domains can now integrate sophisticated web research directly into their workflows: investment firms generating due diligence reports, consulting teams producing competitive intelligence, or product teams creating comprehensive market analyses. The Deep Research Report API collapses what traditionally required teams of researchers and hours of synthesis into a single API call that delivers publication-quality output.

Every report maintains complete verification through in-line citations and source excerpts, providing transparency into how conclusions were reached and enabling readers to verify findings directly from source materials.

## **Start building**

Get started with comprehensive deep research reports in our Developer Platform[ Developer Platform]($https://platform.parallel.ai/) or dive directly into our documentation[documentation]($https://docs.parallel.ai/task-api/features/task-deep-research).

Parallel avatar

By Parallel

September 11, 2025

## Related Posts18

A new pareto-frontier for Deep Research price-performance
Parallel avatar

- [A new pareto-frontier for Deep Research price-performance](https://parallel.ai/blog/deep-research-benchmarks)

Tags:Benchmarks
Reading time: 4 min
Building a Full-Stack Search Agent with Parallel and Cerebras
Parallel avatar

- [Building a Full-Stack Search Agent with Parallel and Cerebras](https://parallel.ai/blog/cookbook-search-agent)

Tags:Cookbook
Reading time: 5 min
Webhooks for the Parallel Task API
Parallel avatar

- [Webhooks for the Parallel Task API](https://parallel.ai/blog/webhooks)

Tags:Product Release
Reading time: 2 min
Introducing Parallel: Web Search Infrastructure for AIs
Parallel avatar

- [Introducing Parallel: Web Search Infrastructure for AIs ](https://parallel.ai/blog/introducing-parallel)

Tags:Benchmarks,Product Release
Reading time: 6 min
Introducing SSE for Task Runs
Parallel avatar

- [Introducing SSE for Task Runs](https://parallel.ai/blog/sse-for-tasks)

Tags:Product Release
Reading time: 2 min
A new line of advanced processors: Ultra2x, Ultra4x, and Ultra8x
Parallel avatar

- [A new line of advanced processors: Ultra2x, Ultra4x, and Ultra8x ](https://parallel.ai/blog/new-advanced-processors)

Tags:Product Release
Reading time: 2 min
Introducing Auto Mode for the Parallel Task API
Parallel avatar

- [Introducing Auto Mode for the Parallel Task API](https://parallel.ai/blog/task-api-auto-mode)

Tags:Product Release
Reading time: 1 min
A linear dithering of a search interface for agents
Parallel avatar

- [A state-of-the-art search API purpose-built for agents](https://parallel.ai/blog/search-api-benchmark)

Tags:Benchmarks
Reading time: 3 min
Parallel Search MCP Server in Devin
Parallel avatar

- [Parallel Search MCP Server in Devin](https://parallel.ai/blog/parallel-search-mcp-in-devin)

Tags:Product Release
Reading time: 2 min
Introducing Tool Calling via MCP Servers
Parallel avatar

- [Introducing Tool Calling via MCP Servers](https://parallel.ai/blog/mcp-tool-calling)

Tags:Product Release
Reading time: 2 min
Introducing the Parallel Search MCP Server
Parallel avatar

- [Introducing the Parallel Search MCP Server ](https://parallel.ai/blog/search-mcp-server)

Tags:Product Release
Reading time: 2 min
Starting today, Source Policy is available for both the Parallel Task API and Search API - giving you granular control over which sources your AI agents access and how results are prioritized.
Parallel avatar

- [Introducing Source Policy](https://parallel.ai/blog/source-policy)

Tags:Product Release
Reading time: 1 min
The Parallel Task Group API
Parallel avatar

- [The Parallel Task Group API](https://parallel.ai/blog/task-group-api)

Tags:Product Release
Reading time: 1 min
State of the Art Deep Research APIs
Parallel avatar

- [State of the Art Deep Research APIs](https://parallel.ai/blog/deep-research)

Tags:Benchmarks
Reading time: 3 min
Introducing the Parallel Search API
Parallel avatar

- [Introducing the Parallel Search API ](https://parallel.ai/blog/parallel-search-api)

Tags:Product Release
Reading time: 2 min
Introducing the Parallel Chat API - a low latency web research API for web based LLM completions. The Parallel Chat API returns completions in text and structured JSON format, and is OpenAI Chat Completions compatible.
Parallel avatar

- [Introducing the Parallel Chat API ](https://parallel.ai/blog/chat-api)

Tags:Product Release
Reading time: 1 min
Parallel Web Systems introduces Basis with calibrated confidences - a new verification framework for AI web research and search API outputs that sets a new industry standard for transparent and reliable deep research.
Parallel avatar

- [Introducing Basis with Calibrated Confidences ](https://parallel.ai/blog/introducing-basis-with-calibrated-confidences)

Tags:Product Release
Reading time: 4 min
The Parallel Task API is a state-of-the-art system for automated web research that delivers the highest accuracy at every price point.
Parallel avatar

- [Introducing the Parallel Task API](https://parallel.ai/blog/parallel-task-api)

Tags:Product Release,Benchmarks
Reading time: 4 min
![Company Logo](https://parallel.ai/parallel-logo-540.png)

Contact

  • hello@parallel.ai[hello@parallel.ai](mailto:hello@parallel.ai)

Resources

  • About[About](https://parallel.ai/about)
  • Pricing[Pricing](https://parallel.ai/pricing)
  • Docs[Docs](https://docs.parallel.ai)
  • Blog[Blog](https://parallel.ai/blog)
  • Changelog[Changelog](https://docs.parallel.ai/resources/changelog)
  • Careers[Careers](https://jobs.ashbyhq.com/parallel)

Info

  • Terms[Terms](https://parallel.ai/terms-of-service)
  • Privacy[Privacy](https://parallel.ai/privacy-policy)
  • Trust Center[Trust Center](https://trust.parallel.ai/)
![SOC 2 Compliant](https://parallel.ai/soc2.svg)
LinkedIn[LinkedIn](https://www.linkedin.com/company/parallel-web/about/)Twitter[Twitter](https://x.com/p0)

Parallel Web Systems Inc. 2025