Parallel
About[About](https://parallel.ai/about)Blog[Blog](https://parallel.ai/blog)Docs[Docs](https://docs.parallel.ai/introduction/quickstart)
Start Building
P
[Start Building](https://platform.parallel.ai/)
[Menu]

# The Parallel Task Group API

Tags:Product Release
Reading time: 1 min
The Parallel Task Group API

Parallel Tasks[Parallel Tasks]($https://parallel.ai/blog/parallel-task-api) are designed for large-scale workloads. When your pipeline needs to launch hundreds or thousands of independent web research calls, the new **Task Group API** wraps those operations into a single batch - giving you one identifier to create, monitor, and collect results from large parallel workloads.

### Create a Task Group
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import httpx from parallel.types import TaskRunCreateParams client = httpx.Client( base_url="https://beta.parallel.ai", headers={"x-api-key": "your-api-key"}, ) # 1. Create a task-group shell group_resp = client.post("/v1beta/tasks/groups", json={}).json() taskgroup_id = group_resp["taskgroup_id"] # 2. Initiate runs in that group questions = [ "What is the capital of France?", "What is the capital of Germany?", ] run_resp = client.post( f"/v1beta/tasks/groups/{taskgroup_id}/runs", json={ "inputs": [ TaskRunCreateParams(input=q, processor="lite") for q in questions ] }, ).json() print("Initial status:", run_resp["status"]) # 3. Stream live events for this run events_url = f"/v1beta/tasks/groups/{taskgroup_id}/events" with client.stream("GET", events_url) as stream: for chunk in stream.iter_text(): if chunk.strip(): # ignore keep-alive blanks print("Event:", chunk)```
import httpx
from parallel.types import TaskRunCreateParams
 
client = httpx.Client(
base_url="https://beta.parallel.ai",
headers={"x-api-key": "your-api-key"},
)
 
# 1. Create a task-group shell
group_resp = client.post("/v1beta/tasks/groups", json={}).json()
taskgroup_id = group_resp["taskgroup_id"]
 
# 2. Initiate runs in that group
questions = [
"What is the capital of France?",
"What is the capital of Germany?",
]
run_resp = client.post(
f"/v1beta/tasks/groups/{taskgroup_id}/runs",
json={
"inputs": [
TaskRunCreateParams(input=q, processor="lite")
for q in questions
]
},
).json()
 
print("Initial status:", run_resp["status"])
 
# 3. Stream live events for this run
events_url = f"/v1beta/tasks/groups/{taskgroup_id}/events"
 
with client.stream("GET", events_url) as stream:
for chunk in stream.iter_text():
if chunk.strip(): # ignore keep-alive blanks
print("Event:", chunk)
 
```

## **Built for Production Scale**

Whether you're enriching thousands of CRM records, conducting bulk due diligence, or processing large-scale competitive intelligence workflows - the Task Group API makes running Parallel Tasks in batch seamless.

**Unified monitoring** — Track queued, running, completed, and failed counts through a single endpoint instead of polling hundreds of individual Tasks.

**Real-time results streaming** — Open one connection and receive each Task's structured output the moment it completes, eliminating the need to orchestrate multiple polling loops.

**Dynamic expansion** — Add new Tasks to active groups without restarting batches, supporting workflows that discover additional research targets mid-execution.

## **Start Building at Scale**

The Task Group API is available in public beta today. Get started in our Developer Platform[Developer Platform]($https://platform.parallel.ai/) or dive directly into the documentation[documentation]($https://docs.parallel.ai/resources/group-api).

Parallel avatar

By Parallel

July 2, 2025

## Related Posts5

State of the Art Deep Research APIs
Parallel avatar

- [State of the Art Deep Research APIs](https://parallel.ai/blog/deep-research)

Tags:Benchmarks
Reading time: 3 min
Introducing the Parallel Search API
Parallel avatar

- [Introducing the Parallel Search API ](https://parallel.ai/blog/parallel-search-api)

Tags:Product Release
Reading time: 2 min
Introducing the Parallel Chat API - a low latency web research API for web based LLM completions. The Parallel Chat API returns completions in text and structured JSON format, and is OpenAI Chat Completions compatible.
Parallel avatar

- [Introducing the Parallel Chat API ](https://parallel.ai/blog/chat-api)

Tags:Product Release
Reading time: 1 min
Parallel Web Systems introduces Basis with calibrated confidences - a new verification framework for AI web research and search API outputs that sets a new industry standard for transparent and reliable deep research.
Parallel avatar

- [Introducing Basis with Calibrated Confidences ](https://parallel.ai/blog/introducing-basis-with-calibrated-confidences)

Tags:Product Release
Reading time: 4 min
Parallel Web Systems is excited to introduce the Parallel Task API, a state-of-the-art system for automated web research that delivers the highest accuracy on the market on complex deep research tasks.
Parallel avatar

- [Introducing the Parallel Task API](https://parallel.ai/blog/parallel-task-api)

Tags:Product Release,Benchmarks
Reading time: 4 min
![Company Logo](https://parallel.ai/parallel-logo-540.png)

Company

  • hello@parallel.ai[hello@parallel.ai](mailto:hello@parallel.ai)

Resources

  • About[About](https://parallel.ai/about)
  • Docs[Docs](https://docs.parallel.ai)
  • Blog[Blog](https://parallel.ai/blog)
  • Changelog[Changelog](https://docs.parallel.ai/resources/changelog)
  • Careers[Careers](https://jobs.ashbyhq.com/parallel)

Info

  • Terms[Terms](https://parallel.ai/terms-of-service)
  • Privacy[Privacy](https://parallel.ai/privacy-policy)
  • Trust Center[Trust Center](https://trust.parallel.ai/)
LinkedIn[LinkedIn](https://www.linkedin.com/company/parallel-web/about/)

Parallel Web Systems Inc. 2025