Parallel
About[About](https://parallel.ai/about)Pricing[Pricing](https://parallel.ai/pricing)Careers[Careers](https://jobs.ashbyhq.com/parallel)Blog[Blog](https://parallel.ai/blog)Docs[Docs](https://docs.parallel.ai/home)
[Start Building]
[Menu]

# Introducing the Core2x processor for improved compute control on the Task API

Starting today, a new processor, Core2x, is available in the Parallel Task API to offer developers finer control over the compute budget they wish to allocate for a given web research task.

Tags:Product Release
Reading time: 2 min
View Docs
Introducing the Core2x processor for improved compute control on the Task API

As AI systems begin to query the web orders of magnitude beyond regular human usage patterns, compute allocation becomes a fundamental infrastructure challenge.

Our belief is that there is dramatic variance in computational requirements across different research tasks. A routine data enrichment query should not consume the same resources as a complex multi-hop investigation requiring extensive validation and synthesis.

Parallel's processor[processor]($https://parallel.ai/pricing) architecture addresses this challenge through granular compute allocation, spanning from Lite processors at 5 CPM to Ultra8x at 2,400 CPM. Today, we're introducing Core2x at 50 CPM—filling a critical gap between Core and Pro processors for moderately complex research tasks that require more depth than basic enrichment but less compute than full exploratory analysis.

## **Why Core2x?**

Illustration demonstrating deep research API concepts, web search capabilities, or AI agent integration features
![](https://cdn.sanity.io/images/5hzduz3y/production/459fe3b19a9212057cca2aaadc6b459b4c484344-1200x675.png)

The jump from Core (25 CPM) to Pro (100 CPM) represented a 4x increase in cost for 4x increase in compute budget. For many production workflows, this previously meant that Core processors occasionally lacked the depth for multi-hop workflows that require complex synthesis, while Pro processors over-allocated compute for tasks that didn't require as much extensive exploration.

Core2x sits precisely in this gap. At 50 CPM with 2-5 minute latency, it delivers 2x the compute of Core while maintaining efficient turnaround times for moderate-complexity research tasks.

## **When to use Core2x**

Core2x is optimized for research tasks that require:

  • - Cross-validation across multiple sources without deep research level exploration
  • - Moderately complex synthesis where Core might fall short
  • - Structured outputs with 10 fields requiring verification
  • - Production workflows where Pro's compute budget exceeds requirements

Consider Core2x when your task demands more rigor than standard enrichment but doesn't require the multi-source deep research capabilities of Pro or Ultra+ processors.

Get started in our Developer Platform[Developer Platform]($https://platform.parallel.ai/) or dive into the documentation[documentation]($https://docs.parallel.ai/task-api/guides/choose-a-processor).

Parallel avatar

By Parallel

October 9, 2025

## Related Posts25

How Day AI merges private and public data for business intelligence
Parallel avatar

- [How Day AI merges private and public data for business intelligence](https://parallel.ai/blog/case-study-day-ai)

Tags:Case Study
Reading time: 4 min
Full Basis framework for all Task API processors
Parallel avatar

- [Full Basis framework for all Task API processors](https://parallel.ai/blog/full-basis-framework-for-task-api)

Tags:Product Release
Reading time: 2 min
Building a real-time streaming task manager with Parallel
Parallel avatar

- [Building a real-time streaming task manager with Parallel](https://parallel.ai/blog/cookbook-sse-task-manager-with-parallel)

Tags:Cookbook
Reading time: 5 min
How Gumloop built a new AI automation framework with web intelligence as a core node
Parallel avatar

- [How Gumloop built a new AI automation framework with web intelligence as a core node](https://parallel.ai/blog/case-study-gumloop)

Tags:Case Study
Reading time: 3 min
Introducing the TypeScript SDK
Parallel avatar

- [Introducing the TypeScript SDK](https://parallel.ai/blog/typescript-sdk)

Tags:Product Release
Reading time: 1 min
Building a serverless competitive intelligence platform with MCP + Task API
Parallel avatar

- [Building a serverless competitive intelligence platform with MCP + Task API](https://parallel.ai/blog/cookbook-competitor-research-with-reddit-mcp)

Tags:Cookbook
Reading time: 6 min
Introducing Parallel Deep Research reports
Parallel avatar

- [Introducing Parallel Deep Research reports](https://parallel.ai/blog/deep-research-reports)

Tags:Product Release
Reading time: 2 min
A new pareto-frontier for Deep Research price-performance
Parallel avatar

- [A new pareto-frontier for Deep Research price-performance](https://parallel.ai/blog/deep-research-benchmarks)

Tags:Benchmarks
Reading time: 4 min
Building a Full-Stack Search Agent with Parallel and Cerebras
Parallel avatar

- [Building a Full-Stack Search Agent with Parallel and Cerebras](https://parallel.ai/blog/cookbook-search-agent)

Tags:Cookbook
Reading time: 5 min
Webhooks for the Parallel Task API
Parallel avatar

- [Webhooks for the Parallel Task API](https://parallel.ai/blog/webhooks)

Tags:Product Release
Reading time: 2 min
Introducing Parallel: Web Search Infrastructure for AIs
Parallel avatar

- [Introducing Parallel: Web Search Infrastructure for AIs ](https://parallel.ai/blog/introducing-parallel)

Tags:Benchmarks,Product Release
Reading time: 6 min
Introducing SSE for Task Runs
Parallel avatar

- [Introducing SSE for Task Runs](https://parallel.ai/blog/sse-for-tasks)

Tags:Product Release
Reading time: 2 min
A new line of advanced processors: Ultra2x, Ultra4x, and Ultra8x
Parallel avatar

- [A new line of advanced processors: Ultra2x, Ultra4x, and Ultra8x ](https://parallel.ai/blog/new-advanced-processors)

Tags:Product Release
Reading time: 2 min
Introducing Auto Mode for the Parallel Task API
Parallel avatar

- [Introducing Auto Mode for the Parallel Task API](https://parallel.ai/blog/task-api-auto-mode)

Tags:Product Release
Reading time: 1 min
A linear dithering of a search interface for agents
Parallel avatar

- [A state-of-the-art search API purpose-built for agents](https://parallel.ai/blog/search-api-benchmark)

Tags:Benchmarks
Reading time: 3 min
Parallel Search MCP Server in Devin
Parallel avatar

- [Parallel Search MCP Server in Devin](https://parallel.ai/blog/parallel-search-mcp-in-devin)

Tags:Product Release
Reading time: 2 min
Introducing Tool Calling via MCP Servers
Parallel avatar

- [Introducing Tool Calling via MCP Servers](https://parallel.ai/blog/mcp-tool-calling)

Tags:Product Release
Reading time: 2 min
Introducing the Parallel Search MCP Server
Parallel avatar

- [Introducing the Parallel Search MCP Server ](https://parallel.ai/blog/search-mcp-server)

Tags:Product Release
Reading time: 2 min
Starting today, Source Policy is available for both the Parallel Task API and Search API - giving you granular control over which sources your AI agents access and how results are prioritized.
Parallel avatar

- [Introducing Source Policy](https://parallel.ai/blog/source-policy)

Tags:Product Release
Reading time: 1 min
The Parallel Task Group API
Parallel avatar

- [The Parallel Task Group API](https://parallel.ai/blog/task-group-api)

Tags:Product Release
Reading time: 1 min
State of the Art Deep Research APIs
Parallel avatar

- [State of the Art Deep Research APIs](https://parallel.ai/blog/deep-research)

Tags:Benchmarks
Reading time: 3 min
Introducing the Parallel Search API
Parallel avatar

- [Introducing the Parallel Search API ](https://parallel.ai/blog/parallel-search-api)

Tags:Product Release
Reading time: 2 min
Introducing the Parallel Chat API - a low latency web research API for web based LLM completions. The Parallel Chat API returns completions in text and structured JSON format, and is OpenAI Chat Completions compatible.
Parallel avatar

- [Introducing the Parallel Chat API ](https://parallel.ai/blog/chat-api)

Tags:Product Release
Reading time: 1 min
Parallel Web Systems introduces Basis with calibrated confidences - a new verification framework for AI web research and search API outputs that sets a new industry standard for transparent and reliable deep research.
Parallel avatar

- [Introducing Basis with Calibrated Confidences ](https://parallel.ai/blog/introducing-basis-with-calibrated-confidences)

Tags:Product Release
Reading time: 4 min
The Parallel Task API is a state-of-the-art system for automated web research that delivers the highest accuracy at every price point.
Parallel avatar

- [Introducing the Parallel Task API](https://parallel.ai/blog/parallel-task-api)

Tags:Product Release,Benchmarks
Reading time: 4 min
![Company Logo](https://parallel.ai/parallel-logo-540.png)

Contact

  • hello@parallel.ai[hello@parallel.ai](mailto:hello@parallel.ai)

Resources

  • About[About](https://parallel.ai/about)
  • Pricing[Pricing](https://parallel.ai/pricing)
  • Docs[Docs](https://docs.parallel.ai)
  • Status[Status](https://status.parallel.ai/)
  • Blog[Blog](https://parallel.ai/blog)
  • Changelog[Changelog](https://docs.parallel.ai/resources/changelog)
  • Careers[Careers](https://jobs.ashbyhq.com/parallel)

Info

  • Terms[Terms](https://parallel.ai/terms-of-service)
  • Privacy[Privacy](https://parallel.ai/privacy-policy)
  • Trust Center[Trust Center](https://trust.parallel.ai/)
![SOC 2 Compliant](https://parallel.ai/soc2.svg)
LinkedIn[LinkedIn](https://www.linkedin.com/company/parallel-web/about/)Twitter[Twitter](https://x.com/p0)

Parallel Web Systems Inc. 2025